Metabolic conversion of platelet-activating factor into ethanolamine plasmalogen in an amnion-derived cell line.
نویسندگان
چکیده
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) labeled with 3H in the alkyl side chain was taken up rapidly by amnion-derived WISH cells in culture. The radioactivity was found in a number of cellular metabolites, principally 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-acyl-GPC) which was labeled at a rapid rate. No intracellular accumulation of lyso-PAF was detected. At longer time periods, a substantial proportion of the radioactivity was found in association with the phosphatidylethanolamine fraction extracted from the cells. This fraction contained a high proportion of the corresponding 1',2'-alkenyl derivative (plasmalogen), as judged by the formation of long-chain fatty aldehyde after exposure to acid. The magnitude of the conversion of PAF into ethanolamine plasmalogen is suggestive of a correlation between plasmalogen content and exposure to PAF in some tissues. The exact sequence of reactions leading from alkyl-acyl-GPC to the ethanolamine derivatives is yet to be established.
منابع مشابه
Bioactive amide of prostaglandin E1 and ethanolamine plasmalogen analog of platelet-activating factor inhibits several pathways of human platelet aggregation.
The influence of an amide of prostaglandin E1 and ethanolamine plasmalogen platelet-activating factor analog 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phospho-(N-11alpha, 15alpha-dioxy-9-keto-13-prostenoyl)ethanolamine (PGE1-PPAF) on platelet-activating factor (PAF)-, ADP-, and thrombin-induced human platelet aggregation has been studied. It was found that PGE1-PPAF inhibits the PAF-, ADP-, and thr...
متن کاملThe utilization of ethanolamine and serine for ethanolamine phosphoglyceride synthesis by human Y79 retinoblastoma cells.
Phospholipid synthesis was investigated in human Y79 retinoblastoma cells, a cultured cell line of retinal origin that retains many neural characteristics. Ethanolamine is taken up by Y79 cells through a high-affinity transport system and is utilized to synthesize ethanolamine and choline phosphoglycerides. High-affinity ethanolamine uptake has a K'm of 40.6 microM and a V'max of 1.06 nmol/min/...
متن کاملUsing neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's Disease
Not all of the mysteries of life lie in our genetic code. Some can be found buried in our membranes. These shells of fat, sculpted in the central nervous system into the cellular (and subcellular) boundaries of neurons and glia, are themselves complex systems of information. The diversity of neural phospholipids, coupled with their chameleon-like capacity to transmute into bioactive molecules, ...
متن کاملSynthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver.
Studies with mammalian cell lines have led to suggestions that mammalian tissues may derive all of their phosphatidylethanolamine (PE) from the decarboxylation of phosphatidylserine (PS), and also that the physiological significance of the CDP-ethanolamine pathway was the synthesis of ethanolamine plasmalogen. We have therefore investigated the biosynthesis of PE and ethanolamine plasmalogen vi...
متن کاملCapability of Platelet Factor 4 to Induce Apoptosis in the Cancerous Cell Lines in Vitro
Background and Aims: Platelet factor 4 (PF4) or CXCL4 is a member of CXC chemokine family which is stored in alpha granules of platelets. The main function known for PF4 is angiostasis which may contribute to prevent tumor metastasis. This feature is mediated by CXCR3 on the endothelial cells. Our principal aim was to study the apoptosis induction in three cell lines treated with PF4 and obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 27 شماره
صفحات -
تاریخ انتشار 1992